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Abstract  

School communities interact dynamically, much like the agents in a multi-agent system. For coordinated action, relationships between agents in 
a multi-agent system must be handled. One technique for persuading individuals to behave in a coordinated manner is to manage the role of 
agents in generating knowledge, attitudes, and practices. Managing these connections is difficult due to the large number of unknowns. Modeling 
can aid in the clarification of agent relationships. Coordination mechanisms can be modeled using Markov models. Agents can demonstrate and 
consider how their actions affect other agents in order to achieve desired behavior goals. This paper extends the state space of Partially Observable 
Markov Decision Processes (POMDPs) with an agent model to make them multi-agent friendly.   
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INTRODUCTION 

Since the mid-1950s, the Markov model has been used in psychology to infer cognitive states from data 
sequences in learning experiments (Miller, 1952; Steiner and Greeno, 1969). This is accomplished through 
learning experiments. It is now widely acknowledged as a useful tool for integrating massive sets of longitudinal 
observations (Langeheine, Stern, and Van de Pol, 1994) on topics ranging from implicit learning (Visser, 
Raijmakers, & van der Maas, 2009) to well-being (Eid and Langeheine, 2007). They have also been used in the 
classroom to investigate actor agreements (Weingart, 1999), peer scaffolding that occurs from interactions 
between students in a synchronous networked setting (Pata, Lehtinen, and Sarapuu, 2006), and to compare the 
efficacy of students' various counseling strategies (Duys, and Headrick, 2004). A number of sophisticated 
models were also developed to shed light on the sequential decision-making process (Fu and Anderson, 2006; 
Niv, 2009). 

Within the scope of this study, it is assumed that there are personnel who can assist the work unit's operations 
in its pursuit of the goal. As a result, one can assert that there is such a thing as an autonomous agent. An 
autonomous agent is an intelligent creature that acts rationally and deliberately in relation to its goal and the 
information it currently possesses (Wooldridge, 1999). The focus of the field of research known as multi-agent 
systems, or MAS for short, is the study of autonomous agents interacting in the same environment, sharing 
resources, bargaining and collaborating to achieve their goals, forming coalitions, and experiencing disputes, 
among other things. 

If autonomous agents in a multi-agent system are to complete their missions successfully, there must be 
sufficient coordination (MAS). Such coordination is required to handle the various types of dependencies that 
naturally arise when agents have goals that are related to one another, when they share the same environment, 
or when resources are shared among multiple parties. Coordination is the process by which an agent considers 
his own actions as well as the actions that he anticipates others will take. The purpose of this process is to 
ensure that the community operates in a consistent manner (Jennings, 1996). One of the most important issues 
to consider when developing coordination approaches for multi-agent systems is how to manage instances in 
which the actions of one agent affect the operations of the actions of another agent (Malone and Crowston, 
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1994). For example, one agent's actions may make it easier for another agent to carry out their own actions, or 
they may allow another agent to carry out a different activity. 

This paper discusses the challenge of representing and administering coordination mechanisms between work 
units in an unpredictable environment. The goal is to instill consistent behavior. We argue that in order for an 
agent to behave coherently, they must be able to infer and explain coordinating relationships. An agent working 
toward a goal, for example, must be able to anticipate potential conflicts and determine whether the actions of 
another agent will help or hinder their efforts to achieve the goal. 

Partially observable Markov decision processes, also known as interactively partially observable Markov 
decision processes, can provide a framework for sequential decision making in a partially observable multiagent 
environment (I-POMDP). They modified the POMDP algorithm to allow it to be used in a multiagent context 
by including a computed model of other agents in the state space alongside the physical environment's state. In 
Bayesian games, a model is related to a type because it contains all of the information that determines the 
behavior of agents, such as their preferences, abilities, and beliefs. I-POMDP takes a subjective approach to 
studying strategic behavior, based on a decision theory framework that takes into account a decision maker's 
perspective in interaction. This enables a more nuanced analysis of the phenomenon under investigation. 

RELATED WORKS 

Black and Wiliam (1998) compiled a collection of studies that support the conclusion that instructors who use 
assessment to drive instructional decision making have better quantifiable outcomes than teachers who do not 
use assessment (Black and Wiliam, 2010). This mathematical model of decision-making requires two parts: an 
assessment model and an instructional activity model. Both of these models are required. The evidence-centered 
assessment design (ECD) method is a principled method for generating mathematical models for instructional 
components, but it does not account for instructional impacts (Mislevy, Steinberg, and Almond, 2003). 

A critical component of this profession is the development of qualitative models for the effects of education 
that teachers, tutors, and other instructors use in their reasoning. Each unit describes the subjects covered by 
the training's consequences as well as the prerequisite criteria that ultimately lead to success. Quantitative 
information, such as how likely a student is to succeed in the lesson (regardless of whether or not the 
prerequisites have been completed), and the magnitude of the effect if the lesson is successful, is typically 
lacking (or unsuccessful). 

Consider a music tutor who works with a student one-on-one to teach them how to play a musical instrument 
and meets with them on a weekly basis. The weekly tutoring session consists of assessing the students' progress 
and assigning new assignments for the following week. To make the model easier to understand, assume that 
the majority of the learning occurs during the first week of the student's practice. Tutors can show students 
new ideas and methods, but they won't truly understand them until they put them into practice for at least a 
week. 

The tutor will present practice activities for the student to work on at each meeting between the student and 
the tutor, which will typically include a combination of different types of exercises as well as songs (music or a 
significant portion of a piece of music). There is no denying that Vygotsky’s zone theory of proximal 
development applies to this option (Vygotsky and Cole, 1978). If the tutor does not teach in a challenging 
enough manner for the student, the student will not gain much from the experience. If the tutor's lessons are 
too difficult for the student, very little learning will take place. A portion of the challenge is determining current 
levels of proficiency in order to provide appropriate instruction. Assume that the tutor can adjust the level of 

difficulty of the exercise along two dimensions: mechanics and fluency. In this article, 𝑎𝑡 =

(𝑎𝑡, mechanics, 𝑎𝑡, fluency) refers to the activities performed by the instructor (or the duties assigned by the tutor) 

at the time indicated by 𝑡 (Li et al., 2019). 

Lessons take place at various times, 𝑡1, 𝑡2, 𝑡3, …. This will happen at regular intervals for the most part, but 
there may be gaps in between (vacation, missed lessons, etc.). Because the events that occur between lessons 

are frequently interesting, the time remaining until the next lesson is abbreviated as ∆𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛. The 
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notation, however, accounts for missed lessons, vacations, and other circumstances that may result in uneven 

spacing. This is due to the fact that ∆𝑡𝑛 will remain constant over time in many applications. Even with a small 
number of examples, a significant portion of the problem's characteristics must be represented. 

MATERIALS AND METHODS 

POMDP 

A Markov model is a strategy that analyzes the behavior of many variables based on their current state in order 
to predict how they will behave in the future. A starting method is required to get started with this option. 
POMDP (Partially Observed Markov Decision Process) was used in this study, and its complexity was later 
reduced to I-POMDP (Interactive-Partially Observed Markov Decision Process). In order to find solutions to 
management challenges, both approaches examine the behavior of prior agents, beginning with the individual 
belief process and working their way up to an action. If POMDP is intended to work with a single agent, I-
POMDP is intended to work with multiple agents and is an excellent choice for school communities with a 
variety of components. 

To compute the single agent model, first derive POMDP, which is defined in the following sentence (Boutilier, 
Dean, and Hanks, 1999; Hauskrecht, 2000; Kaelbling, Littman, and Cassandra, 1998; Monahan, 1982). 

POMDPi = S, Ai, Ti, i, Oi, Ri 

Where: 

𝑺 = the range of existing environmental conditions  

Ai  = sequence of actions agent 𝑖 can perform 

Ti  = transition function –Ti : S  Ai  S  [0, 1] which describes the result of the action of agent 

𝑖.  

i  = series of observations made by agent 𝑖. 

Oi  = agent observation function – Oi : S  Ai  i  [0, 1] which is the observation probability if 
the agent performs various actions that cause changes in conditions or conditions that are different 
from the previous one. 

Ri  = reward function that represents the characteristics of agent 𝑖.  (Ri: S  Ai  R ) 

RESULTS AND DISCUSSION 

In this research we introduce variables, such as: 

Knowledge 

Attitude  

Practice  

The role of Headmaster (𝑆Ω𝐴) 

Teachers’ role (𝑆Ω𝐴) 

Parents’ role (𝑆Ω𝐴) 

School committee’s role (𝑆Ω𝐴) 

Agents’ role and students’ KAP along with school community in North Sumatra Province can be found as 
written from the following table. 

 

Table 1. Level of School Community Coordination Mechanism  
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Level of School Community 
Coordination Mechanism in determining Students KAP can be determined using the following diagram:  

 

Figure 1. Level of school community coordination mechanism 

Model Development 

MAS is assumed to be the same as a school community due to the fact that the school system is also a 
dynamic system, consisting of separate parts and with relationships and interactions within them. 

Create a School Community Coordination Diagram developed from Influence Diagrams and Theory of 
Learning 

Enter data from the distribution (𝑆Ω𝐴) 

Calculate the value of probabilities for change in the school community. 

No Description Persentage 

1 Head Masters’ role 37,77 
2 Teachers’ role 40,12 
3 School committee’ role 42,15 
4 Parents’ role 48,08 
5 Students knowledge 25,96 
6 Students attitude 55,49 
7 Students practice 65,94 
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The Markov model is a method for analyzing the current behavior of several variables in order to predict the 
behavior of these variables in the future. 

In this paper we use partially observed Markov Decision Process (POMDP) approach to get the probabilities 
value for the transition of the students’ KAP (Boutilier, Dean, and Hanks, 1999; Hauskrecht, 2000; Kaelbling, 
Littman, and Cassandra, 1998; Monahan, 1982). 

In state 𝑖 the partially observed Markov decision Process defined as 𝑃𝑂𝑀𝐷𝑃𝑖 = 〈𝑆𝑖, 𝐴𝑖 , 𝑇𝑖, Ω𝑖 , 𝑂𝑖, 𝑅𝑖〉. 

Where 𝑆𝑖 is a sequence of existing environmental conditions. 

𝐴𝑖 is a sequence of action of agent 𝑖 can perform.  

𝑇𝑖 is transition function −𝑇𝑖: 𝑆 × 𝐴𝑖 × 𝑆 → [0,1] which describes the results of agent 𝑖 action.  

Ω𝑖 is a sequence of observations performed by agent 𝑖. 

𝑂𝑖 is observation function of agent −𝑂𝑖: 𝑆 × 𝐴𝑖 × Ω𝑖 → [0,1] which is the probability of observation 
if the agent takes various actions that cause changes in conditions or conditions that are different from 
before. 

𝑅𝑖 is a reward function that represents a characteristic of agent 𝑖 (𝑅𝑖: 𝑆 × 𝐴𝑖 → 𝑅). 

Table 1. Distribution of data based on Variable 𝑺, Ω, and 𝑨 

School 
Community 

Agents’ Role Students’ Kap 
KAP 

Average 
Variable 

Head 
Master 

Teachers 
School 

Committee 
Parents 𝐾 𝐴 𝑃 

𝑆 46.77 32.00 34.85 47.81 48.42 27.93 51.76 42.70 

Ω𝑖 29.64 39.71 52.80 37.08 31.00 27.74 13.11 23.95 

𝐴𝑖 23.59 28.29 12.35 15.11 20.57 44.33 35.12 33.34 

From the influence diagram it can be seen that it is necessary to calculate the probability provided that the 
observation has occurred so that the probability value that you want to calculate is the conditional probability 
value. 

𝑃(𝐴𝑘𝑜𝑚|Ω𝑘𝑜𝑚) 

Solve it, then the result can be written as: 

O 

S 

A 

O 

S 

A 

O 

S 

A 

O 

S 

A 

O 

S 

A 

R 

Figure 2. Model of influence diagram and distribution SOA KOM SEKOLAH 
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𝑃(𝐴𝑘𝑜𝑚|Ω𝑘𝑜𝑚) =
𝑃(𝐴𝑘𝑜𝑚 ∩ Ω𝑘𝑜𝑚)

𝑃(Ω𝑘𝑜𝑚)
 

But in the diagram, the occurrence of Ω (observation) can only occur after the occurrence of S (condition), so 
it can be written as: 

𝑃(𝐴𝑘𝑜𝑚|S𝑘𝑜𝑚) 

From conditional probability, we get: 

𝑃(𝐴𝑘𝑜𝑚|S𝑘𝑜𝑚) =
𝑃(𝐴𝑘𝑜𝑚 ∩ S𝑘𝑜𝑚)

𝑃(S𝑘𝑜𝑚)
 

𝑃(𝐴𝑘𝑜𝑚 ∩ S𝑘𝑜𝑚) = S𝑘𝑜𝑚 × Ω𝑘𝑜𝑚 = 0.349 × 0.528 

𝑃(S𝑘𝑜𝑚) = 0.349 

𝑃(Ω𝑘𝑜𝑚|S𝑘𝑜𝑚) = 0.528 

Then for, 

𝑃(A𝑘𝑜𝑚|Ω𝑘𝑜𝑚) =
𝑃(𝐴𝑘𝑜𝑚 ∩ Ω𝑘𝑜𝑚)

𝑃(Ω𝑘𝑜𝑚)
 

=
𝑃(𝐴𝑘𝑜𝑚 ∩ Ω𝑘𝑜𝑚)

𝑃(Ω𝑘𝑜𝑚|S𝑘𝑜𝑚)
 

𝑃(A𝑘𝑜𝑚 ∩ Ω𝑘𝑜𝑚) = S𝑘𝑜𝑚 × 𝐴𝑘𝑜𝑚 × Ω𝑘𝑜𝑚 

= 0.349 × 0.124 × 0.528 

Therefore, 

𝑃(A𝑘𝑜𝑚|Ω𝑘𝑜𝑚) = 0.124 × 0.349 = 0.043 

 

𝑃(𝑅 ∩ 𝐴𝑆) = 𝑆𝑆 × 𝐴𝑆 = 0.427 × 0.333 = 0.14 

𝑃(𝐴𝑆) = 𝑃(𝐴𝑆|Ω𝑆 , 𝐴𝑔) = 0.08 

𝑃(𝑅 ∩ 𝐴𝑘𝑆) = 𝑆𝑘𝑆 × 𝐴𝑘𝑆 = 0.468 × 0.236 = 0.11 

𝑃(𝐴𝑘𝑆) = 𝑃(𝐴𝑘𝑆|Ω𝑘𝑆) = 0.273 

Thus, 

𝑃(𝑅|𝐴𝑆 , 𝐴𝑘𝑆) = (
0.08

0.14
) (

0.11

0.273
) 

= 0.57 × 0.403 

= 0.23 

𝑇𝑅𝑖𝐾 = (𝑆𝑖 × Ω𝑖 × 𝐴𝑖)𝑖 × 𝑇𝑅𝐾 

𝑇𝑅𝑖𝐴 = (𝑆𝑖 × Ω𝑖 × 𝐴𝑖)𝑖 × 𝑇𝑅𝐴 

𝑇𝑅𝑖𝑃 = (𝑆𝑖 × Ω𝑖 × 𝐴𝑖)𝑖 × 𝑇𝑅𝑃 

 

Simulation results for the development of students’ KAP due to the change of School community agents, will 
be given as follows. 
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Figure 3. Development of students’ KAP due to the change of Headmaster Condition 

 

Figure 4. Development of Students’ KAP due to the change observation of head master 
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Figure 5. Development of students’ KAP due to the change of head master’s action 

 

Figure 6. Development of students’ KAP  due to the change of Head Master’s  Action 

Once this POMDP is completed, it is expected to produce a guide or technique that maps historical 
observations or behavioral steps toward action. If POMDP is used as a single agent, the school community will 
require a multi-agent system that reduces the number of individual POMDPs (Interactive POMDP). This 
method provides a decision-making sequence structure that can be used in a multi-agent environment. This 
model considers all information that could influence the behavior of the agents in question, such as their 
preferences, abilities, and beliefs. The concept of “preference” in the context of this investigation refers to what 
is assumed to be an internal drive as well as an outward drive and incentive. Meanwhile, knowledge and talents 
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are assumed to be synonymous, and beliefs are assumed to be synonymous with perceptions, attitudes, and 
expectations. 

When we speak of the multi-agent state, we are referring to the process of generalizing I-POMDPs. However, 
in order to ensure that this model can be calculated, the set of tabulations is assumed to be limited. This is done 
so that the agent's expectations of success within a given time frame are maximized. POMDP can be generalized 
to I-POMDP, which stands for POMDP derived from multi-agent systems, specifically I-POMDPi,l =  
(ISi,l,Ti,Ωi, Oi,Ri ). 

When it comes to specific models, specifically refers to 𝑚𝑗 and when the model was purposefully designed, 

specifically refers to 𝜃𝑗 (Gmytrasiewicz and Doshi , 2005). 

Furthermore, the agent may obtain proof or facts concerning the physical condition of the world around him 

and/or the activities carried out by the agent 𝑗. Agent 𝑖 will compute the behavior for all of the models in 𝑚𝑗 

and then update its confidence based on a number of ISi,l derived from previously collected data. 

There are two criteria to consider when using this reward optimization to achieve the optimal level of reward. 
I-POMDPs are allegedly becoming more common, allowing for the creation of multi-agent environments with 
few constraints. This allows for planning difficulties to arise in environments with ambiguity (uncertainty), 
regardless of whether agents are acting cooperatively, competitively, or in conflict with one another. In some 
cases, the agent is aware of the current environmental conditions and can calculate the behavior for all 
conditions by increasing the level of confidence, as described in the following formulation. 

𝑏𝑖
𝑡(𝑖𝑠𝑡) = 𝑃𝑟(𝑖𝑠𝑡|𝑜𝑖

𝑡, 𝑎𝑖
𝑡−1)

= 𝛽 ∑ ∑ 𝑃𝑟(𝑎𝑖
𝑡−1|𝜃𝑖

𝑡−1)𝑂𝑖(𝑖𝑠𝑡 , 𝑎𝑡−1, 𝑜𝑖
𝑡)

𝑎𝑗
𝑡−1𝐼𝑆𝑡−1

× ∑ 𝜏𝜃𝑗
𝑡

𝑎𝑗
𝑡

(𝑏𝑗
𝑡−1, 𝑎𝑗

𝑡−1, 𝑜𝑗
𝑡 , 𝑏𝑗

𝑡)𝑂𝑗(𝑖𝑠𝑗
𝑡 , 𝑎𝑡−1, 𝑜𝑗

𝑡) × 𝑇𝑖(𝑖𝑠𝑡−1, 𝑎𝑡−1, 𝑖𝑠𝑡) 

Where 𝜃𝑖 = 〈𝑏𝑖, 𝐴𝑖, Ω𝑖, 𝑇𝑖, 𝑂𝑖 , 𝑅𝑖, 𝑂𝐶𝑖〉, 𝑖𝑠 = (𝑠, 𝜃𝑗), 𝑖𝑠 = (𝑠, 𝜃𝑖) denotes the confidence element of 𝜃𝑗
𝑡−1 and 

𝑏𝑗
𝑡−1, respectively, 𝛽 denotes the normalized constant, 𝑂𝑗 denotes the observation function in 𝜃𝑗

𝑡−1, and 

𝑃𝑟(𝑎𝑖
𝑡−1|𝜃𝑖

𝑡−1) denotes the probability, which is the Bayesian rational 𝑎𝑖
𝑡−1 for the agent denoted by the type 

𝜃𝑗
𝑡−1. 

𝜏𝜃𝑗
𝑡(𝑏𝑗

𝑡−1, 𝑎𝑗
𝑡−1, 𝑜𝑗

𝑡 , 𝑏𝑗
𝑡) is currently 𝑃𝑟(𝑏𝑖

𝑡|𝑏𝑖
𝑡−1, 𝑎𝑖

𝑡−1, 𝑜𝑖
𝑡)’s representative. Agent 𝑖’s optimization criteria are 

denoted by 𝑂𝐶𝑖. 

POMDPs are structured similarly to POMDPs, with each confidence state in POMDP having a value that 
corresponds to the maximum return an agent can expect in that confidence state. 

𝑈(𝜃𝑖) = max
𝑎𝑖∈𝐴𝑖

{∑ 𝐸𝑅𝑖(𝑖𝑠, 𝑎𝑖)𝑏𝑖(𝑖𝑠)

𝑖𝑠

+ 𝛾 ∑ 𝑃𝑟(𝑜𝑖|𝑎𝑖 , 𝑏𝑖)

𝑎𝑖∈Ω𝑖

𝑈(〈𝑆𝐸𝜃𝑖
(𝑏𝑖, 𝑎𝑖, 𝑜𝑖), 𝜃𝑖〉)} 

Where 𝐸𝑅𝑖(𝑖𝑠, 𝑎𝑖) = Σ𝑎𝑗
 

𝑅𝑖(𝑖𝑠, 𝑎𝑖, 𝑎𝑗)𝑃𝑟(𝑎𝑗|𝑚𝑗) as long as 𝑖𝑠 = (𝑠, 𝜃𝑗) 

The optimal agent action 𝑖 is an action that is a component of the optimal set of actions for the 𝑂𝑃𝑇(𝜃𝑖) 
confidence state, which is defined as follows: 

𝑂𝑃𝑇(𝜃𝑖) = arg max
𝑎𝑖∈𝐴𝑖

 {∑ 𝐸𝑅𝑖(𝑖𝑠, 𝑎𝑖)𝑏𝑖(𝑖𝑠) + 𝛾 ∑ 𝑃𝑟(𝑜𝑖|𝑎𝑖 , 𝑏𝑖)

𝑎𝑖∈Ω𝑖

𝑈(〈𝑆𝐸𝜃𝑖
(𝑏𝑖, 𝑎𝑖 , 𝑜𝑖), 𝜃𝑖〉)

𝑖𝑠

} 
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CONCLUSION 

This study introduces a comprehensive framework for optimal sequential decision-making, tailored for 
governing the autonomy of agents in dynamic interactions within uncertain environments. The proposed 
framework is predicated on the normative planning paradigm, utilizing Markov decision processes as a 
foundational model, particularly focusing on Partially Observable Markov Decision Processes (POMDP). We 
enhance the POMDP framework to incorporate interactions among multiple agents by allowing for the 
inclusion of beliefs about both the physical environment and other agents. Such beliefs encompass assessments 
of capabilities, perceived intentions, preferences, and anticipated behaviors. 

Our extended framework parallels the traditional POMDP in several respects, maintaining its core properties 
and similarly structured solutions, yet it uniquely accommodates the complexities of multi-agent scenarios. In 
the absence of other agents, our model simplifies back to the conventional POMDP. 

The resultant model, termed the Coordination Mechanism-Based Model for Environmental Behavior 
Management (CMBEBM), is evaluated through an empirical study focusing on the development of Knowledge, 

Attitudes, and Practices (KAP) among students, driven by interactions defined by parameters 𝑆, 𝛺, and 𝐴. The 
findings indicate significant enhancements in students' knowledge, attitudes, and particularly actions, 
confirming the model's efficacy in fostering positive environmental behaviors. The CMBEBM has proven to 
be an effective alternative for managing environmental behaviors within school communities, providing 
targeted information and recommendations for strategic improvements in management practices, tailored to 
specific needs. 
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