Tools Used from Mathematics in The Study of a Riemannian Wave Equation to Prevent the Collapse of Bridges

Authors

  • Ruben Dario Mendoza Arenas Universidad Nacional del Callao
  • Josefina Arimatea García Cruz Universidad Nacional de Educación Enrique Guzmán y Valle
  • César Vilchez Inga Universidad Nacional del Callao
  • Santiago Rodolfo Aguilar Loyaga Universidad Nacional del Callao
  • Ana María Holgado Quispe Universidad Tecnológica del Perú
  • Raquel Atoche Wong Universidad Nacional Federico Villarreal
  • José Ricardo Rasilla Rovegno Universidad Nacional del Callao
  • Rubén José Mora Santiago Universidad Nacional de Educación Enrique Guzmán y Valle

DOI:

https://doi.org/10.61707/j96ttp93

Keywords:

Mathematics, Dampers, Location, Bridge Collapse

Abstract

In this research, the study of dynamical systems is addressed in the area of partial differential equations, focusing on a mathematical model represented by a Dirichlet-type wave equation on a Riemannian manifold. The goal is to understand the importance of mathematics in optimizing dampers and locating them in curved structures, such as bridges, to prevent their collapse.

Downloads

Published

2024-06-14

Issue

Section

Articles

How to Cite

Tools Used from Mathematics in The Study of a Riemannian Wave Equation to Prevent the Collapse of Bridges . (2024). International Journal of Religion, 5(11), 921-931. https://doi.org/10.61707/j96ttp93

Similar Articles

11-20 of 93

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)