Comparative Study of Statistical Techniques for Preliminary Diagnosis of Cancer Risk

Authors

  • HERNAN OSCAR CORTEZ GUTIÉRREZ Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • MILTON MILCIADES CORTEZ GUTIÉRREZ Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • VANESSA MANCHA ALVAREZ Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • CÉSAR MIGUEL GUEVARA LLACSA Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • LIV JOIS CORTEZ FUENTES RIVERA Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • CESAR ANGEL DURAND GONZALES Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • GIRADY IARA CORTEZ FUENTES RIVERA Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • BRAULIO PEDRO ESPINOZA FLORES Facultad de Ciencias de la Salud, Universidad Nacional del Callao
  • MIGUEL ANGEL GIL FLORES Facultad de Ciencias de la Salud, Universidad Nacional del Callao

DOI:

https://doi.org/10.61707/3nb1q484

Keywords:

Neural Networks, Python, Prediction, Logistic regression, Cervical

Abstract

The purpose of the is to elaborate models for preliminary diagnosis using statistical techniques. We compare two models for the estimation of cervical cancer risks.This article aims to compare predictive models for cervical cancer using machine learning techniques. We set up classification tables to compare the overall correct prediction rates.The data used comes from 30 cases of cervical cancer. We fitted a Logistic Regression (LR) model and trained Artificial Neural Networks (ANNs). The multicollinearity problem, usually present in modeling with numerous predictive variables, was addressed with factor analysis and Pearson Correlations.The LR model and ANN model were evaluated based on their percentage of correct classifications. The LR model achieved an accuracy of 33.33%, while the ANN model achieved an accuracy of 16.67%.Based on the percentage of correct classification, the Logistic Regression model was superior to the Neural Networks for the cervical cancer dataset. This highlights the need for further exploration of different machine learning approaches and data preprocessing techniques to improve predictive performance for cervical cancer risks. 

Downloads

Published

2024-06-30

Issue

Section

Articles

How to Cite

Comparative Study of Statistical Techniques for Preliminary Diagnosis of Cancer Risk . (2024). International Journal of Religion, 5(10), 2528-2543. https://doi.org/10.61707/3nb1q484

Similar Articles

21-30 of 126

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)